
Journal of Statistical Physics, Vol. 95, Nos. 5�6, 1999
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The Ising lattice gas, with its well known equilibrium properties, displays a
number of surprising phenomena when driven into nonequilibrium steady
states. We study such a model with anisotropic interparticle interactions
(J | |{J=), using both Monte Carlo simulations and high temperature series
techniques. Under saturation drive, the shift in the transition temperature can
be both positive and negative, depending on the ratio J | | �J= ! For finite drives,
both first- and second-order transitions are observed. Some aspects of the phase
diagram can be predicted by investigating the two-point correlation function at
the first nontrivial order of a high-temperature series expansion.

KEY WORDS: Nonequilibrium; driven diffusive systems; lattice gas; kinetic
Ising model; anisotropy.

1. INTRODUCTION

Our understanding of collective behavior in many-body systems in, or
near, thermal equilibrium has improved significantly in the past century.
By contrast, only recently has there been much attention focused on
systems far-from-equilibrium, even for those in steady states. Abundant in
nature, such systems exist in an enormous variety of states, most of which
cannot be predicted using the framework of equilibrium statistical
mechanics. At present, there is no simple formulation which is generally
applicable. One way to make progress into this vast realm of non-equi-
librium physics is to study simple models, especially those with well under-
stood equilibrium properties. This is the chief motivation of Katz et al., (1)
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who introduced a seemingly trivial modification to the Ising lattice gas, (2)

so that it is driven into non-equilibrium steady states. The other motivation
is phase transitions in fast ionic conductors in an external field, though
their model predictions have not been compared directly with these physi-
cal systems so far.

This model consists of a d-dimensional hyper-cubic lattice with each
site being empty or occupied by a single particle. Its dynamics is particle
hopping to nearest neighbor empty sites, with a rate controlled by the
energetics of the Ising Hamiltonian H, as well as a bias in one direction
so as to describe the effect of a uniform, DC ``electric'' field E. To connect
with the equilibrium system, rates are chosen to satisfy ``local'' detailed
balance consistent with being in contact with a thermal bath at tem-
perature T. In particular, by setting E=0, we simply retrieve the canonical
exp(&H�kBT ) as the stationary distribution. Since its inception, many
unexpected properties have been discovered, for both the original model
and its many variants.(3) Though some of the remarkable behaviors are
reasonably well understood, many remain unexplained. An example is the
basic question: why should Tc(E ), the critical temperature for the attractive
(ferromagnetic) case, increase with E? Simulations (using Metropolis rates
for d=2) show that Tc(�) is about 400 above the Onsager temperature!(4)

Indeed, one can easily argue in favor of a lowering of Tc , as follows. Since
large fields would dominate over the inter-particle attraction (for hops
along E ), the system is effectively subjected to an extra noise, so that a
lower T is needed for clustering and order.

With further explorations of this system, simple arguments in favor of
an increased Tc began to emerge.(5) However, there is still no compelling
reason, so far, to accept or reject the contradictory arguments. In other
words, we still have no intuitive picture which can guide us to reliable
expectations. This study is a continuation of the exploration of similar
systems, (6, 5, 7) in an effort to find the underlying mechanisms which give
rise to the novel phase diagrams. Specifically, we consider Ising models
with anisotropic interactions, i.e., interparticle attraction along and trans-
verse to the drive being unequal (J | |{J=). Such a model was previously
studied, but only in the fast rate limit.(8) Unfortunately, though very inter-
esting in its own right, this limit is too singular to provide us with much
insight into the original lattice gas. For example, no trace of E remains, yet
a phase transition prevails even for J=#0! In the following section, we
describe our model, restricting our attention to d=2 only. Simulations lead
to more surprises, the details of which will be presented in Section 3. The
next section is devoted to a theoretical study, using high temperature series
expansion techniques on the two-point correlation function.(9, 10) A final
section is devoted to a summary, conclusions and outlook.
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2. DRIVEN LATTICE GAS WITH ANISOTROPIC INTERACTIONS

Our system consists of fully periodic L_M square lattices, with the
sites labeled by x=(x, y), where x and y are integers modulo L and M,
respectively. Each site may be empty or occupied by a particle, so that a
configuration of the system is specified by the set of occupation numbers
[n(x)], where n=0 or 1. This model is simply related to the original Ising
one for spins through the relation s#2n&1, which takes on values \1.
Since our interest is a system of particles, �x n(x) is fixed. For simplicity,
we study only half-filled systems, i.e., � n=LM�2 (or � s=0). Next, we
endow the particles with anisotropic nearest neighbor attraction and write
the Hamiltonian as

H#&4Jx : n(x, y) n(x+1, y)&4Jy : n(x, y) n(x, y+1) (2.1)

with Jx , Jy>0. The factor of 4 is included so that the Hamiltonian is
equivalent (given the constraint � s=0) to the standard Ising form,
&J � ss$. For convenience, we introduce anisotropy via a ``dimensionless''
parameter :, through

Jx=J�: and Jy=J: (2.2)

so that J carries the ``overall'' strength of the interactions. When this system
reaches equilibrium with a thermal bath at temperature T, it displays well
known properties in the thermodynamic limit.(11�13) The most prominent
behavior is a second order transition, from a disordered homogeneous
phase to a phase segregated state, when T is lowered through the Onsager
temperature Tc(:). Expressed in units of J�kB , where kB is Boltzmann's
constant, Tc(:) can be obtained from the equation(14)

(1+=:)(1+=1�:)=2 (2.3)

for the quantity =#exp(&2J�kBTc(:)). Specifically, Tc(1)&2.269J�kB ,
which serves as the unit for all the temperatures quoted in this paper.
Using this unit, a plot of Tc(:) is provided in Fig. 1. Note that, due to the
conservation law, the ordered state will be a strip spanning the system
aligned with the x- or y-axis. These states will be denoted by H (horizon-
tal) and V (vertical), respectively. Since the equilibrium state will be the
one with the lowest interfacial free energy, the aspect ratio of the system,
L�M, will play a role as well. For L�M=1, clearly :=1 marks the ``phase
boundary'' between the two states, also shown in Fig. 2. We expect, of
course, that the H-V boundary is associated with a first order transition.
For general L�M, this boundary is located at that :(T ) which satisfies
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Fig. 1. Critical temperatures vs. ln : for E=5 (g) and 50 (M). Both ordered states are V.
The exact values for E=0 are labeled by m's; the dashed line is the boundary between H-
and V-states.

_y(:, T )�_x(:, T )=L�M, where _x is the surface tension for the horizontal
interface, etc.

In computer studies, the simulation of the lattice gas, in equilibrium
with a bath at temperature T, would rely on ``spin-exchange'' dynamics, (15)

so as to respect particle conservation. In other words, particles are allowed
to hop to nearest neighbor holes with a rate obeying detailed balance
appropriate for T. A favorite rate is due to Metropolis, (16) where jump rates
are given by min[1, exp(&2H�kBT )], where 2H is the change in energy

Fig. 2. Phase Diagram for E=0 (solid and dashed lines), 1 (+), and 2 (Q). Points
associated with first order transitions are joined by a dotted line. The disordered region is
labeled by D; the ordered ones by H and V (See text).
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due to the hop. In the generalization to a driven lattice gas, we follow Katz
et al. and incorporate the ``electric'' field (aligned with the y-axis) in the
standard way, i.e., by adding \E to 2H for hops against�along the
field.(1, 3) Our goal is to map out the phase diagram in the T-:-E space.
In the following, we will report the main results, denoting the line of
second (first) order transitions by Tc(:, E ) (:1(T, E )) and quoting E in
units of J. Details will be published elsewhere.(17)

3. SIMULATION METHODS AND RESULTS

Most of our runs involve lattices with L=M=30. For definiteness, we
aligned our drive so that particles are biased to hop ``downwards'' (&y
direction). Starting with one of three initial configurations of a half-filled
lattice, the system is evolved in the standard way. In a Monte Carlo step
(MCS), 2LM bonds (nearest neighbor pairs) are chosen at random. If the
bond consists of a particle hole pair, then the pair is exchanged with
probability min[1, exp(&[2H+E$y]�kBT )], where $y is the change in
the y-coordinate (mod M ) of the particle. Most runs are 400 K MCS long.
The initial configurations are either random or fully ordered (in H or V).
Typically, we discard the first 100 K MCS, allowing the system to settle
into the steady state. Then, every 200 MCS, we measure the Fourier trans-
form of the particle density n(x)

n~ (k, p)#
1

- LM
:
x, y

n(x, y) exp _2?i \kx
L

+
py
M+ & (3.1)

where k, p are integers. Averaging over the rest of the run (denoted by
( ) ), we obtain the structure factors

S(k, p)#( |n~ (k, p)|2) (3.2)

In the disordered state, they are of order unity and convey information
about two-particle correlations. Below the transition, they are sensitive to
the H- or V-ordered state, in the sense that, e.g., S(0, 1) or S(1, 0) will be
O(LM ), and carry information about the densities of phase segregated
states. For example, for a completely ordered V state, we obtain S(0, 1)#0
while S(1, 0)=(2M�L)[1&cos(2?�L)]&1, which approaches LM�?2 in the
thermodynamic limit. Of course, in an ordered H state, these two S 's are
reversed. In this sense, S(0, 1) and S(1, 0) may be viewed as order
parameters.(1) In addition to the mean of |n~ |2, we measure the variance,
(2S)2#( |n~ |4) , which plays a role similar to that of the susceptibility in
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equilibrium systems. For those S 's which are 0(1), the associated 2S 's are
expected to be just S itself.(18) Deep in the ordered phases, though some S 's
will be O(LM ), the 2S 's are expected to be still O(1). However, near a
second order transition, the 2S 's should diverge in the thermodynamic
limit we have also exploited other initial configurations, different sizes and
rectangular systems. These will be discussed in the following sub-sections.

3.1. Second-Order Transitions with Saturation Drive

In the first part of our study, we restrict ourselves to saturation drive
(E=50 here) and to only one system size�geometry: 30_30. Since the field
is large enough to overcome all levels of particle attraction, it is hardly
surprising that the ordered state can only be V. Measuring the structure
factors, we confirm this expectation, in that only S(k, 0) (k odd) grow sub-
stantially as T is lowered. Specifically, starting with random configurations,
we perform 400 K MCS runs for := 1

3 , 1
2 , 3

4 , 1, 4
3 , 2, 3 and 0.5�T�3.0.

We used a range of step sizes in T, the smallest being 0.025, especially when
large variations in measured quantities were encountered. Identifying the
transition through the peak of (2S(1, 0))2, we find the line of second order
transitions Tc(:, �) to be a monotonically decreasing function of :, as
shown in Fig. 1. This behavior is contrary to our previous conjecture, (5)

showing that our intuitive picture, based on the competition of long and
short ranged correlations, is still far from being reliable. More surprisingly,
the critical temperature of the driven system is not always greater than that
for the equilibrium system! Note that, in Fig. 1, Tc(:, 0) is the theoretical
result for an infinite lattice, while Tc(:, �) is found in the 30_30 system.
(The effects of finite size will be discussed in a later sub-section.) A further
distinction is that, while the driven system orders only into the V state, the
equilibrium system may order into H or V depending on :<1 or >1.

We should caution that the uncertainties associated with Tc(:, �) are
much larger than the step size of 0.025. In particular, for T greater than the
quoted Tc(:, �), S(1, 0) does not decrease in a simple way, especially for
systems with large :. In these cases, we frequently observe breakup of a
single strip into two-strip (or multistrip) states. As a result, as T is raised
through this Tc(:, �), not only does (2S(1, 0))2 becomes large, S(2, 0)
also increases by as much as an order of magnitude. In this sense, it is
possible to regard the quoted values as a lower bound for the critical tem-
perature. Typically, at temperatures t300 higher than Tc(:, �), we can
be quite certain that the system is disordered. To be more confident and
precise about critical temperatures, we must use more sophisticated
methods, e.g., histograms of various S 's, finite size scaling, etc.(17)
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3.2. First and Second-Order Transitions with Small Drives

Next, we turn to systems with small drives, searching for the remnants
of the H phase. Keeping the same system size (30_30), we chose E=1, 2,
and 5, so that there is a range of values for the ratio E�J==:E. Expecting
continuous transitions in the neighborhood of the equilibrium line, we per-
formed simulations in the manner described above. As displayed in Fig. 2,
the behavior of Tc(:, E ) is quite complex. For :=3, Tc first increases and
then decreases, so as to match with the low value of Tc(3, �) found above.
For :=1, the known monotonic increase of Tc is confirmed. In its
neighborhood, both Tc(

4
3 , E ) and Tc(

3
4 , E ) appear to be monotonic in E.

In the latter case, the ordered phase remains V, despite the fact :<1. This
reflects the known effect of the drive: setting up positive long range correla-
tions along the drive and so, favoring strips aligned vertically. For :<3�4
and the E 's we have chosen, the systems orders into V or H depending on
the drive. For those cases where the ordered phase is H, it is completely
unexpected that Tc(:, E ) is still typically greater than the equilibrium
Tc(:, 0)! Since the drive is known to reduce correlations in the transverse
direction, we must find a new argument for how ordering (into H) could
occur at a higher temperature. Remarkably, Tc(:, E ) suffers a dip at the
bi-critical point. As a result, for a fixed :, it is seen first to increase with
E (while ordering into H), then to decrease to the minimum value
Tc(:, EB) when the drive reaches EB , a strength just strong enough to
change the ordering to V, and finally, to increase again with stronger
drives. Given our accuracy, Tc(:, EB) seems to be the same as Tc(:, 0),
though we have no reason to believe that they are indeed equal!

Turning to the line of discontinuous transitions, we modified our
methods. Since it is expected to be more or less aligned with the T axis, we
sweep in : with fixed T and E. The critical values are denoted by :1(T, E ),
shown as points joined by dotted lines in Fig. 2.

For E=1, 2 and T as low as 0.9, we are able to look for hysteresis in
such sweeps. In both cases, : is increased and decreased by steps of 0.025
and the system evolved for 200 K MCS at each step. The ratio

S(0, 1)&S(1, 0)
S(0, 1)+S(1, 0)

is monitored and is seen to jump from 1 to &1 and vice versa. :1(T, E ) is
found by averaging the values of : where the jump occurs.

For lower T, the metastable life times are too long and hysteresis
loops become too large to be reliable. Thus, we resort to another method,
which, to our knowledge, is entirely new. Though it does not necessarily
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identify the loci of first order transitions, we argue that it should provide
a good indication. This approach relies on a conjecture of the saddle point
configuration, namely, an ``X'' (Fig. 3a), which is chosen via symmetry con-
siderations. Given the anisotropies in the system (due to both : and E ), we
concede that the saddle point may be a configuration with less symmetry,
e.g., an ``L'' (Fig. 3b). Nevertheless, we believe that the ``X'' should be a
good starting point. First, we carry out 400 K MCS runs with V and�or H
as the initial configuration in this region of phase space. We chose only
three values of T: 0.65, 0.70, and 0.75. For E=1, we focused on the values
:=0.65, 0.70, 0.75, and 0.80. For E=2, we used :=0.40, 0.45, 0.50, and
0.55. Since the system remains in the initial state, sharp distributions of the
structure factors (S(1, 0), S(2, 0), S(0, 1), and S(0, 2)) emerge, providing us
with good averages and standard deviations. Next, we carried out 200
independent runs for each of the above (T, :, E ), starting with the ``X''
configuration. The above S 's are measured every 200 MCS. The runs are
terminated when 10 consecutive measurements (i.e., over a period of 2 K
MCS) of each S fall within 3 standard deviations of the averages. The frac-
tion of runs which terminate in the V state is recorded and found to
increase monotonically with : (with fixed T, E ). The points where this
fraction reaches 1�2 are considered (part of ) the line of first order trans-
itions from H to V. (See Fig. 2.)

Finally, for E=5, all ordered states we have observed are V. Thus, we
never explored the line of first order transitions. To keep Fig. 2 relatively
clear, we display this line of continuous transitions in Fig. 1 instead. It is
possible that first order transitions occur just outside the range of :'s we
used. Indeed, the slight dip of Tc(:, 5) at :=1�3 is actually due to behavior
which is more complicated than that in systems with higher :. For T�1.6,
S(1, 0)<S(0, 1), even though the system actually orders into V for T�1.5,
i.e., S(1, 0)>>S(0, 1). In between, the fluctuations of both structure factors
are comparably large. In this sense, it is possible that (:=1�3, Tt1.55) is
very close to the bi-critical point. To explore further, we must set :<1�3.

Fig. 3. Possible saddle point configurations: (a) ``X'' and (b) ``L.''
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However, we believe that, with J=�J | | -10, reliable conclusions cannot be
drawn from simulations with a 30_30 lattice.

3.3. Effects of Varying System Sizes and Aspect Ratios

The above data were collected on a single system size: 30_30. Of course,
true phase transitions accompanied by thermodynamic singularities are
properties of infinite systems. Any conclusions would rely on either simple
extrapolations or more sophisticated methods of finite size scaling. With
our limitations of computation power, we are able to make only cursory
explorations of the effects of finite size. In particular, we studied 60_60
and 90_90 systems, only for E=50 and the extreme :'s. Our estimates of
the transition temperatures are summarized in Table 1. Again, we caution
that these estimates are based partly on the observation of single strip
breakup, so that ``completely disordered'' states occur only at somewhat
higher temperatures. Similar to the equilibrium cases, these transition tem-
peratures tend to rise with larger sizes. Although there are some significant
increases, we believe that, from the trends displayed here, the general
features of Figs. 1 and 2 will survive the thermodynamic limit.

Finally, we also investigated the effects of having rectangular systems.
By varying the aspect ratio, we can insure that the ground state of the equi-
librium system is in the V- or the H-state, with the crossover point at
M�L=:2. We could study systems with these aspect ratios. On the other
hand, at any finite temperature, the ``crossover'' M�L is given by the ratio
of surface energies associated with the interfaces(19) aligned along the two
axes, i.e.

M
L

=
2K:+ln(tanh(K�:))
2K�:+ln(tanh(K:))

; K#J�kBT (3.3)

In other words, for a given aspect ratio, this equation provides the phase
boundary between H- and V-states. By duality, this ratio is also the one for

Table 1. Transition Temperature for Various L and :

L": 1�3 1�2 2 3

30 2.25 1.75 0.97 0.67
60 2.40 1.85 1.05 0.77
90 2.45 1.90 1.05 0.80
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the correlation lengths associated with two-point correlations along the
two axes(20) in the disordered phase. Thus, another possibility is to study
systems which, near criticality, behave isotropically when the rectangular
systems are rescaled to be square ones. Since our interest is mainly in disor-
der-order transitions, we adopted the latter choice here. Evaluating (3.3)
near Tc , we arrived at lattice sizes 25_36, 20_48, and 15_64 (for :=4�3,
2, and 3 respectively), in order to compare with the 30_30 case at :=1.
By symmetry, systems with the opposite aspect ratio are used for :<1.
Keeping in mind the previous discussion concerning the uncertainties
associated with Tc , we display the results in Fig. 4. Note that the equi-
librium line is not shown, since it is so close to the E=1 points that confu-
sion may arise. It is unclear if this insensitivity of Tc(:, 1) to the drive is
significant or not. Note that for :=1�3 and 1�2, the system ordered into an
H-state. For E=2, the lowering of Tc(1�3, 2) is curious. This point also
coincides with ordering into an H-state. Comparing with Fig. 2, we see that
there are two main effects due to rectangular lattices: (i) displacement of
the first order line to smaller :'s and (ii) lowering of the transition tem-
peratures into the H-state. The lack of a dip in the E=5 case is consistent
with the bi-critical point being at :�1�3. Apart from these features, system
geometry seems to play no discernible role, especially for large drives. That
the system subjected to small E orders into H-states may be related to the
fact that, at low temperatures, the H-state is favored in the equilibrium
systems according to Eq. (3.3). Clearly, there remains a large gap between
our understanding of these systems and the rich phenomena displayed.

Fig. 4. Transition temperatures for rectangular systems as a function of ln :. Different drives
are shown as E=1 (+), 2 (q), 5 (g), and 50 (M). Transitions into the V-state are joined
by lines.
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4. TWO POINT CORRELATION IN A HIGH TEMPERATURE
EXPANSION

Though the driven lattice gas model was introduced 15 years ago,
there is still no reliable means to predict the general features of the phase
diagram. The dynamic mean-field approach, (21) while quantitatively more
satisfying, is so labor-intensive that it provides us with little insight on why
critical temperatures shift to higher values. This method can certainly be
extended to our anisotropic system. Another route to an estimate of the
shift of Tc is based on a recent study of the two-point correlation function
G(x) in a ``high temperature'' expansion, (10) which is actually an expansion
in small J or K=J�kBT. In this approach, an approximate equation for
G(x), first derived in ref. [9] is solved exactly. The resultant Fourier trans-
form is just the theoretical structure factor: S(k) which not only displays
the well understood discontinuity singularity at k=0, (22) but also may be
exploited to estimate Tc(E ).(10) The results are less accurate than those
from dynamic mean-field theory, since the latter is the generalization of the
Bethe�Peierls approximation for equilibrium Ising models. However, its
implementation is much simpler. Here, we provide a brief presentation of
the generalization to the anisotropic model.

With reference to refs. 9 and 10, where the derivation and the nature
of the approximation can be found, we simply quote the equation for G:

�t G(0, 1)=2[G(1, 1)+G(&1, 1)&2G(0, 1)]

+(1+=)[G(0, 2)&G(0, 1)]+2K(2+=) :

�t G(1, 0)=2[G(2, 0)&G(1, 0)]

+(1+=)[G(1, 1)+G(1, &1)&2G(1, 0)]+2K(1+2=)�:

�t G(1, 1)=2[G(2, 1)+G(0, 1)&2G(1, 1)]

+(1+=)[G(1, 2)+G(1, 0)&2G(1, 1)]&2K(:+=�:)

�t G(0, 2)=2[G(1, 2)+G(&1, 2)&2G(0, 2)]

+(1+=)[G(0, 3)+G(0, 1)&2G(0, 2)]&2=K:

�t G(2, 0)=2[G(3, 0)+G(1, 0)&2G(2, 0)]

+(1+=)[G(2, 1)+G(2, &1)&2G(2, 0)]&2K�: (4.1)

and, for all other non-zero x, y:

�t G(x, y)=(1+=)[G(x, y+1)+G(x, y&1)&2G(x, y)]

+2[G(x+1, y)+G(x&1, y)&2G(x, y)]
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Here,

=#exp(&E�kBT )

with the understanding that these equations are valid to first order in K.
Setting the left hand side of (4.1) to zero, the linear equations for the steady
state G*(x, y) and its transform S*(k, p) can be solved, with the proviso
that, at the zeroth order in K,

G*(0, 0)=1

G*(x, y)=0 x, y{0

and

S*(k, p)=1

Since : does not affect the structure of these equations and enters only
through the inhomogeneous terms, we can follow the analysis in ref. 10
closely and obtain the equation for Tc(:, E ). The result can be succinctly
summarized by

Tc(:, E )
Tc(1, E )

=
1

1+ f (=)
:+

f (=)
1+ f (=)

1
:

(4.2)

The structure of this ratio is, necessarily of this form, since Tc(:, E ) is
linear in (J | | , J=)=J(:, 1�:) and, of course, the ratio is unity when :=1.
Also, since this approach reduces to the simple mean-field result, (24)

:+1�:, for the equilibrium case (E=0), we know f (1)=1. Unfortunately,
the expression for f

f (=)=
R11+2(1&=)[R10R12&R2

11]
R11+2(1&=)[R10R21&R20R11]

(4.3)

where

Rij#
1

(2?)2 |
+?

&?
dk� dp~

(1&cos k� ) i (1&cos p~ ) j

2(1+=)(1&cos k� )+4(1&cos p~ )
(4.4)

is not transparent enough to provide much insight into shifts in Tc . For the
entire range 0�=�1, we find that 1� f <2, so that both coefficients in
(4.2) are positive. As a result, Tc(:) is not a monotonically decreasing func-
tion of :, as found in simulations for large E. Perhaps we should not be too
surprised, since Tc(:, E )�Tc(1, E ) can be only a linear combination of :
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and 1�:. Nevertheless, some features are qualitatively reproduced, such as
Tc(:0<1) being greater than Tc(1�:0). Finally, noticing that these results
are based on an infinite lattice, we extended them to finite lattices. This
generalization consists mainly of replacing the integrals in (4.4) by finite
sums over, e.g., k� =2?k�L. No significant changes are found down to
L=30, so that we did not extend this investigation to L{M. Again, it is
remarkable that qualitative features, such as the increase of Tc with L, are
reproduced.

A more serious disadvantage of this approach is that it gives no infor-
mation for E=O(J ). If the ``high temperature'' expansion is also analytic
in E, then the only way E can appear in Tc(:, E ) is through O(E 2). For
reasons beyond the scope of this paper, a second order computation is
prohibitively difficult. As a result, we are unable to extract any insight,
from this approach, into the more interesting parts of the phase diagram.

5. CONCLUSIONS

In this paper, we report simulation studies of a lattice gas with
anisotropic interparticle interactions, driven to a non-equilibrium steady
state by an external ``electric'' field. Focusing first on two-dimensional
systems (30_30) subjected to saturation drive, we find the surprising result
that the critical temperature, Tc(:, E ) is a monotonically decreasing func-
tion of :#- J | | �J= , for fixed J#- J | | J= (Fig. 1). Moreover, it is less than
Tc(:, 0) of the equilibrium system for :-1.7! These findings remain essen-
tially unchanged for systems up to 90_90, leading us to believe that
Tc(:, E ) for the infinite system is not likely to be drastically different from
those reported here. For drives of the order of J, the transitions from the
disordered to an ordered phase are continuous. The transition tem-
peratures are generally greater than the equilibrium Tc 's, at least within the
range of : # [1�3, 3] explored. The phase diagram is more complex (Fig. 2),
since two ordered states (a strip aligned along or transverse to the drive)
appear, depending on : and E. The transition between H- and V-states is,
as expected, discontinuous. For reasons yet to be fathomed, the line of con-
tinuous transitions ``dips'' at the bi-critical paint, where it meets the H-V
phase boundary. Finally, we have also investigated rectangular systems
with aspect ratios which depend on : in such a way that, near criticality,
these behave isotropically with a simple rescaling of the axes. Though some
differences are observed, the phase diagrams are qualitatively unchanged.

On the theoretical front, we have estimated the transition temperatures
for large drives, using the simplest method available: first order in a ``high
temperature'' expansion. Unfortunately, only the most qualitative feature is
reproduced, namely, Tc(:0)�Tc(1�:0) is greater than unity for :0<1. Since
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this method is insensitive to E=O(J ), the more interesting aspects of
the phase diagram are inaccessible. We hope that dynamic mean field
methods, (21) which can probe small drives, will be successful in producing
the behavior in this region of T-:-E space.

Clearly, this study should be regarded as an initial exploration,
providing us with rough guidelines on which parts of the phase diagram to
probe deeper. Many interesting questions await more detailed simulations
as well as theoretical analyses. We end with a sample list here. The critical
behavior of an equilibrium system is independent of :, i.e., whether the
system orders into a V- or an H-state. However, for driven systems, renor-
malized field theory predicts drastically different behavior for these two
types of ordering.(23) (a) In particular, we expect that transitions into
V-states belong to the universality class of the standard driven system, with
5 being the upper critical dimension, etc. Thus, checking the validity of this
prediction by simulations would be desirable. (b) On the other hand, there
are no infrared stable fixed points for a theory with longitudinal phase
separation, so that this approach fails to describe any of the second order
transitions into H-states. This kind of ordering is observed in several other
non-equilibrium systems.(25, 26) An interesting question for simulation
studies is whether any of these systems share the same critical behavior,
thereby establishing new classes of driven diffusive systems. (c) Similar
issues arise for the ``bi-critical point.'' For an equilibrium system, due to the
underlying symmetry, there can be no new behavior. However, for the
driven systems, we expect the two critical lines to fall into different univer-
sality classes, so that there must be non-trivial cross-over phenomena
associated with this point. A similar situation arises in the driven bi-layer
lattice gas.(5) (d) In the context of the above issues, finite size scaling (27)

stands out as the common and central analytical tool. (e) For the line of
first order transitions at lower T, we could improve the accuracy in several
ways. This boundary was determined by starting runs with a conjectured
saddle point configuration (``X''). Checking with other initial configurations
(e.g., ``L'') should increase confidence in our findings. Running with more
sophisticated algorithms, so as to circumvent the long metastable life-times,
would be very desirable. (f ) Finally, the interfaces in the ordered H-states
are necessarily inequivalent, since the drive tends to deposit particles on
one and remove particles from the other. Interfacial correlations in the
standard driven systems (ordered in V-states) display remarkable proper-
ties.(28) A natural question is: what is the nature of the correlation here?
In addition, long wavelength interface instabilities are quite possible, (29, 30)

so that it will be extremely interesting to investigate systems with much
larger L. From this study, it is clear that we are still far from having an
intuitive picture of why driven systems order in the way they do. Hopefully,
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with the completion of some of these suggested investigations, we will be
closer to the understanding of these deceptively simple non-equilibrium
systems.
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